
MiahAI — Offline Private Learning
Assistant

ASP.NET Core MVC app with a local modular reasoning engine gateway and session
memory. Teaching centric design, that guides understanding and avoids completing
assignments for the user.

Project Highlights

Built with ASP.NET Core MVC using a clean Core, Infrastructure, and Web separation.
Identity for secure sign-up and sign-in, server-side validation, and policy-ready roles.
Chat UI focused on coaching: Why, What, Quick Check, rather than answer dumps.
SQL backed Learning History with full CRUD operations to save, edit, and retrieve prior
sessions.
AI integration via API hook, designed for scalability and easy model swapping.(The
underlying AI model is proprietary, under training, is separately, and intentionally excluded
from this project’s scope and repository.)
Privacy first configuration with local or network private options for data residency.
Extensible architecture with repositories, services, DI, and stable boundaries for future
features.

Primary Function
 MiahAI is a secure, private application designed as your personal learning partner. It turns questions

into true understanding by guiding the user through the why and the what behind each topic, checking
comprehension, and saving progress to a SQL backed Learning History. Requests from the chat are
validated and sent through a clean API adapter to an external, model-agnostic reasoning service.
Responses are parsed and stored with the user’s notes. Engine internals are intentionally out of scope
for this project. MiahAI also enforces learning integrity: it will not complete graded assignments or
deliver final solutions; instead, it explains concepts, outlines reasoning steps, and helps the student
verify their own work

Creating the application with ASP.NET Core MVC

The AI model integration was the primary component developed in this application.
 The ChatController validates chat requests from the UI, sends them to the external reasoning service
API using a stable adapter, and saves responses, notes, and outcomes to the Learning History in SQL
with full CRUD support. components include Account for identity and authentication, and Memory for
browsing, searching, and editing session history. This architecture keeps the AI intelligence external to
the application while delivering a private, classroom and team ready experience.

User Flow & Routes (Production Defaults)
1) Landing Page (Home)
• Welcome, tagline, and calls to action for Login / Sign Up.
2) Authentication (Account/Login, Account/Register)
• Sign in or create an account; includes Forgot Password.
3) Main Chat (ChatUI, History)
• Start a new chat or continue an existing session with MiahAI.
4) Learning History (History/Index, Memory/Index)
• Read: Browse, search, and sort sessions.
• Update/Delete: Rename or remove sessions.
• Create: Start a new chat from empty state or header CTA.
5) Profile (Account/EditProfile)
• Edit username, email, password; optional 2FA and Delete Account.

Connecting to the External Reasoning Service API

 MiahAI integrates with a model agnostic Reasoning Service through a clean API boundary.
 Requests from the Chat UI are validated, serialized, and sent via an adapter; responses are parsed
and stored alongside user notes within the Learning History. This design preserves privacy, keeps AI
internals out of scope for this project, and enables future model upgrades without code churn.

Utilizing EF Core/Dapper with SQL
 The application persists chat sessions and notes using SQL. Data access is implemented with EF

Core, with Dapper used where appropriate, to support create, read, update, and delete operations on
the Learning History. Server-side validation ensures data integrity and a reliable user experience. for
the next phase, I will be integrating a vector embedding index, for semantic recall and retrieval
augmented coaching, while SQL remains the system of record.

COMING
SOON‌

Presenting Learning History stored in Database

Users can browse andsearch previouslysavedlearning sessions.The UI displays topic, date, notes,
and links to resume the conversation. This page demonstrates how knowledge compounds over
time.

Create

Creating and Editing Entries (CRUD)

MiahAI includes forms to create, edit, and delete entries in the Learning History. All forms are protected
by server-side validation and Identity. This mirrors the sample’s insert/edit flow applied to educational
records.

Read

Update

>

DELETE

Profile — Edit Profile:

Manage identity (username/email), change password (current and new)
, and access recovery actions.

